Gamma-Ray Bursts: what do we need in the 2020s?

Valerie Connaughton USRA

Working group for GRB roadmap: Nicola Omodei, Bing Zhang, VC. Others?

What motivates gamma-ray observations of GRBs?

- Understanding the physics of GRBs and jetted relativistic outflows
- GRBs as a tool for cosmology
- GRBs as beacons for multi-messenger astronomy

GRB physics (I) Spectral energy distributions of GRBs probe the physics of jetted relativistic outflows

- Current: Fermi provides 8 decades of energy. Very active area of research science moving beyond empirical functions to physical modeling of jet content, radiation mechanism.
- Future needs: Broad energy range in peak(10s 1000s keV) and higher energies. Localization good enough for follow-ups; probe of MeV 100 MeV region that is ill-observed.

GRB Physics (2) Polarization of GRB prompt emission - new territory to distinguish between models based on inferences about magnetic fields

Expected polarization fraction for different models as a function of GRB EPeak

Toma et al. 2009

- Current: Some tantalizing results from IKAROS, INTEGRAL, RHESSI but no conclusive measurements.
- Needs: Large area for gamma-ray polarimetry of dozens -100 GRBs, broad gamma-ray energy coverage to reduce MDP. Crude localization.

Cosmology (I) can GRBs probe the time of the earliest stars and the epoch of reionization?

- Current: Swift rapid XRT response enables optical follow-up to reveal many z. Results imply source number or luminosity evolution.
- Future needs: Rapid location good enough for spectroscopy of distant GRBs; GRB detector sensitive enough for weak, distant GRB; on-board IR capability for distant z?

Cosmology (2) Can GRBs be used like SN Ia in the distant universe?

- Current: Golden age. Fermi reveals observer-frame energetics. Follow-up to Swift reveals z.
- Future needs: If relations are calibrated, gamma-ray observations suffice; rapid X-ray response and/or sensitive long-term X-ray response to uncover full range of jet breaks.

Cosmology (3): The GRB - Core collapse supernova connection. Nearby long GRBs tend to have associated 1bc SN detections

- Current: Swift rapid XRT response enables optical follow-up to reveal z and allow optical tracking of lightcurve to uncover SN.
- Future needs: Wide field-of-view GRB detector as these local events are not common. Localization good enough for follow-up.

Multi-messenger (I) GRB fireballs should have protons that produce a detectable neutrino flux for bright GRBs providing Γ < 400 - 500

Abbasi et al. 2012 Constraints from 196 GRBs

- Current: IceCube limits to neutrino fluxes from bright GRBs.
- Future needs: A more sensitive IceCube! Bright GRBs broad sky coverage. Broad energy range covering peak of SED for meaningful predictions.

Multi-messenger (2): if short GRBs are compact object binary mergers, they offer a clear e/m counterpart to gravitational waves detectable by LIGO/Virgo

- Current: GBM sees 45 short GRBs per year. aLIGO/Virgo coming online. Sub-threshold searches in both directions (GW and GRB) important. Handful per year within aLIGO horizon (Kalogera, this morning)
- Future needs: Capability to detect many short GRBs broad sky coverage, energy coverage in 100s 100s keV, sensitivity to impulsive events, location good enough for RAPID follow-up not so important when aLIGO at full sensitivity.

Other: Fundamental Physics - Lorentz Invariance, the unknown....

- Current: Fermi offers broad energy range for LIV studies. Bright GRBs easy to locate well enough for follow-up to determine z.
- Current: High-energy emission from GRBs provides a probe of Extragalactic Background Light to more distant z than blazars.
- Future needs: Unclear how to improve LIV or EBL very high energy detections would help both. Expect the unknown.
- Role of short-lived millisecond magnetars in GRB production

Other: An all-sky monitor of transient or variable high-energy emission provides value to other space missions

The transient sky to GAIA

Figure credit: A. Smith, H. Campbell (IoA, Cambridge)

- Current: Fermi GBM and Swift BAT offer all/broad-sky monitoring of hard X-ray sky.
- Future needs: Maintain this capability to support e.g., Athena. Lower energy threshold than needed for GRB triggering is desirable for galactic transients.

Summary of bucket list. Some of this can be done elsewhere. What is most important?

- All/Broad sky coverage
- Broad energy coverage for GRBs 10 keV I GeV
 - Highest energies on-ground with HAWC/CTA
 - Lower threshold desirable for non-GRB transients
- Localization capability for follow-up observations how good?
 - ZTF/DES/LSST can help ok for physics, multi-messenger
- On-board afterglow and redshift determination
 - short GRBs need rapid follow-up
 - high-z needs IR spectroscopy (on-board? JWST/TMT/GMT?)
- Sensitive instrument weak GRBs needed for high-z universe 10^-9 erg/cm^2 fluence (between 50 300 keV)?
- Large collection area needed for 100s keV MeV polarization.

The three main paths to cover GRB science needs in the 2020s

- A probe-class mission that does it all: sky monitor, spectral coverage, localization, afterglow and redshift determination. Can polarization be accommodated too? More of a flagship.
- A secondary transient-detecting instrument on-board a probe doing something else e.g. a polarization or pair telescope.
- A stand-alone transient monitor or fleet of monitors concentrating on GRB physics but enabling follow-ups on-ground or on another satellite.

Time to start our roadmap. Do we need a mailing list? A schedule? Coordination with other science groups?